Gumagamit ang website na ito ng cookies upang matiyak na makukuha mo ang pinakamahusay na karanasan sa aming website. Matuto pa
Nakuha ko!
verdoos social media Logo
    • Masusing Paghahanap
  • Bisita
    • Mag log in
    • Magrehistro
    • Night mode
shrutii Cover Image
User Image
Hilahin para mailagay sa tamang posisyon ang cover
shrutii Profile Picture
shrutii
  • Timeline
  • Mga grupo
  • Mga gusto
  • Sumusunod
  • Mga tagasunod
  • Mga larawan
  • Mga video
  • Mga reel
shrutii profile picture
shrutii
25 sa - Isalin

How Do You Handle Missing or Corrupted Data in a Dataset?

In the world of machine learning, data is the foundation upon which models are built. However, real-world datasets are rarely perfect. They often contain missing or corrupted data due to various reasons such as human errors, system glitches, or incomplete data collection processes. Handling such data effectively is crucial because poor data quality can lead to inaccurate models, misleading insights, and unreliable predictions. Whether you're enrolled in machine learning classes in Pune or exploring advanced techniques in data science, understanding how to manage missing or corrupted data is an essential skill.

This blog delves into the best practices for handling missing and corrupted data, ensuring that your machine learning models remain robust and accurate.

What Causes Missing or Corrupted Data?
Before exploring solutions, it’s important to understand why data issues occur:

Human Error: Mistakes during data entry or manual handling can result in missing values.
Data Collection Issues: Incomplete surveys, sensor malfunctions, or transmission errors can cause gaps.
System Failures: Software bugs, hardware malfunctions, or network interruptions can corrupt data.
Data Integration Problems: Merging datasets from different sources without proper alignment can lead to inconsistencies.
Understanding the root cause helps determine the most appropriate method for handling the problem.

Types of Missing Data
Missing data can be categorized into three types:

Missing Completely at Random (MCAR): The missingness is entirely random and not related to any other data. For example, a sensor occasionally fails without any identifiable pattern.
Missing at Random (MAR): The missingness is related to other observed data but not the missing data itself. For example, older respondents in a survey might be less likely to answer questions about technology usage.
Missing Not at Random (MNAR): The missingness is related to the missing data itself. For example, people with higher incomes may choose not to disclose their income levels in surveys.
Identifying the type of missing data helps in choosing the right handling technique.

Techniques to Handle Missing Data
1. Deletion Methods
Listwise Deletion: Removes entire rows where any data is missing. This is simple but can result in significant data loss if many records have missing values.
Pairwise Deletion: Analyzes data only with available values for each specific analysis. This retains more data but can complicate correlation calculations.
When to Use: Deletion methods are suitable when the dataset is large, and missing data is minimal and random (MCAR).

2. Imputation Techniques
Imputation involves filling in missing values with substitute data.

Mean/Median/Mode Imputation: Replaces missing values with the mean (for continuous data), median (for skewed data), or mode (for categorical data).
K-Nearest Neighbors (KNN) Imputation: Estimates missing values based on the values of similar (neighboring) data points.
Regression Imputation: Uses regression models to predict missing values based on other features.
Multiple Imputation: Generates multiple datasets with imputed values and averages the results, accounting for uncertainty in missing data.
When to Use: Imputation is effective when missing data is MAR and you want to retain as much information as possible without biasing the dataset.

3. Using Algorithms That Handle Missing Data Natively
Some machine learning algorithms, like decision trees and XGBoost, can handle missing values internally without requiring preprocessing.

When to Use: Ideal when working with large datasets where imputation may be resource-intensive.

Handling Corrupted Data
Corrupted data includes inaccurate, inconsistent, or outlier values that don’t make logical sense.

1. Identifying Corrupted Data
Data Profiling: Analyze datasets to detect anomalies or inconsistencies.
Validation Rules: Apply business rules or data constraints (e.g., age should be between 0 and 12.
Outlier Detection: Use statistical methods like Z-scores or machine learning techniques like Isolation Forests to identify abnormal data points.
2. Correcting or Removing Corrupted Data
Data Cleaning: Manually correct errors when feasible, especially in small datasets.
Standardization: Ensure consistent data formats (e.g., date formats, units of measurement).
Outlier Treatment: Depending on the context, outliers can be corrected, transformed, or removed.
When to Use: Apply correction methods when data can be verified, and removal methods when errors cannot be confidently corrected.
Visit-https://www.sevenmentor.com/da....ta-analytics-courses

Magbasa pa
Gusto
Magkomento
Ibahagi
shrutii profile picture
shrutii
27 sa

_Data Analytics.pdf
Gusto
Magkomento
Ibahagi
shrutii profile picture
shrutii
1 Y

Untitled document (3).pdf
Gusto
Magkomento
Ibahagi
shrutii profile picture
shrutii
1 Y

data science.pdf
Gusto
Magkomento
Ibahagi
 Mag-load ng higit pang mga post
    Impormasyon
  • 4 mga post

  • Babae
    Mga album 
    (0)
    Sumusunod 
    (2)
  • emm Ikeh
    verdolagas
    Mga tagasunod 
    (6)
  • Mia Williams
    WtFix Air
    Kristy Hill
    Eureka Telecom
    hello88to
    tcg forensics
    Mga gusto 
    (4)
  • Ba one paradise and cafe Ltd
    National Association of Social S
    Campus Trend
    AZmerce marketplace
    Mga grupo 
    (0)

© 2025 verdoos social media

Wika

  • Tungkol sa
  • Direktoryo
  • Blog
  • Makipag-ugnayan sa amin
  • Mga developer
  • Higit pa
    • Patakaran sa Privacy
    • Mga Tuntunin ng Paggamit
    • Humiling ng Refund

Unfriend

Sigurado ka bang gusto mong i-unfriend?

Iulat ang User na ito

Mahalaga!

Sigurado ka bang gusto mong alisin ang miyembrong ito sa iyong pamilya?

Sinundot mo Shrutii

Ang bagong miyembro ay matagumpay na naidagdag sa iyong listahan ng pamilya!

I-crop ang iyong avatar

avatar

Pagandahin ang iyong larawan sa profile

Magagamit na balanse

0

Mga imahe


© 2025 verdoos social media

  • Bahay
  • Tungkol sa
  • Makipag-ugnayan sa amin
  • Patakaran sa Privacy
  • Mga Tuntunin ng Paggamit
  • Humiling ng Refund
  • Blog
  • Mga developer
  • Wika

© 2025 verdoos social media

  • Bahay
  • Tungkol sa
  • Makipag-ugnayan sa amin
  • Patakaran sa Privacy
  • Mga Tuntunin ng Paggamit
  • Humiling ng Refund
  • Blog
  • Mga developer
  • Wika

Matagumpay na naiulat ang komento.

Matagumpay na naidagdag ang post sa iyong timeline!

Naabot mo na ang iyong limitasyon na mga kaibigan!

Error sa laki ng file: Ang file ay lumampas sa pinapayagang limitasyon (92 MB) at hindi maaaring i-upload.

Pinoproseso ang iyong video, Ipapaalam namin sa iyo kapag handa na itong mapanood.

Hindi makapag-upload ng file: Ang uri ng file na ito ay hindi suportado.

Nakakita kami ng ilang nilalamang pang-adulto sa larawang na-upload mo, kaya tinanggihan namin ang iyong proseso ng pag-upload.

Ibahagi ang post sa isang grupo

Ibahagi sa isang page

Ibahagi sa user

Naisumite ang iyong post, susuriin namin ang iyong nilalaman sa lalong madaling panahon.

Para mag-upload ng mga larawan, video, at audio file, kailangan mong mag-upgrade sa pro member. Mag-upgrade sa Pro

I-edit ang Alok

0%

Magdagdag ng tier








Pumili ng larawan
Tanggalin ang iyong tier
Sigurado ka bang gusto mong tanggalin ang tier na ito?

Mga pagsusuri

Upang maibenta ang iyong nilalaman at mga post, magsimula sa pamamagitan ng paglikha ng ilang mga pakete. Monetization

Magbayad sa pamamagitan ng Wallet

Tanggalin ang iyong address

Sigurado ka bang gusto mong tanggalin ang address na ito?

Alisin ang iyong monetization package

Sigurado ka bang gusto mong tanggalin ang package na ito?

Mag-unsubscribe

Sigurado ka bang gusto mong mag-unsubscribe sa user na ito? Tandaan na hindi mo matitingnan ang anuman sa kanilang pinagkakakitaang nilalaman.

Alisin ang iyong monetization package

Sigurado ka bang gusto mong tanggalin ang package na ito?

Alerto sa Pagbabayad

Bibili ka na ng mga item, gusto mo bang magpatuloy?
Humiling ng Refund

Wika

  • Arabic
  • Bengali
  • Chinese
  • Croatian
  • Danish
  • Dutch
  • English
  • Filipino
  • French
  • German
  • Hebrew
  • Hindi
  • Indonesian
  • Italian
  • Japanese
  • Korean
  • Persian
  • Portuguese
  • Russian
  • Spanish
  • Swedish
  • Turkish
  • Urdu
  • Vietnamese